Monday, 15 December 2014

Maximum path sum I Problem 18

By starting at the top of the triangle below and moving to adjacent numbers on the row below, the maximum total from top to bottom is 23.
3
7 4
2 4 6
8 5 9 3
That is, 3 + 7 + 4 + 9 = 23.
Find the maximum total from top to bottom of the triangle below:
75
95 64
17 47 82
18 35 87 10
20 04 82 47 65
19 01 23 75 03 34
88 02 77 73 07 63 67
99 65 04 28 06 16 70 92
41 41 26 56 83 40 80 70 33
41 48 72 33 47 32 37 16 94 29
53 71 44 65 25 43 91 52 97 51 14
70 11 33 28 77 73 17 78 39 68 17 57
91 71 52 38 17 14 91 43 58 50 27 29 48
63 66 04 68 89 53 67 30 73 16 69 87 40 31
04 62 98 27 23 09 70 98 73 93 38 53 60 04 23
ALGORITHM

     3
   2   4
10  11  1
 
2+max(10,11),4+max(11,1) = 13,15
 
 
      3
   13   15 
 
 3+max(13,15)=18
 
     18
 
The same procedure we can apply for this big triangle
 
 
C PROGRAM:
 
#include<stdio.h>
static int a[15][15];
static int res[15];
int max(int a,int b)
{
    if(a>b)return a;
    return b;
}
main()
{
    int m,n;
for(m=0;m<15;m++)
    for(n=0;n<=m;n++)
{
    scanf("%d",&a[m][n]);
}
for(m=13;m>=0;m--)
{
    for(n=0;n<=m;n++)
    {
            a[m][n]=max(a[m][n]+a[m+1][n],a[m][n]+a[m+1][n+1]);

    }

}
printf("%d",a[0][0]);
} 
 
 





No comments:

Post a Comment